Answer: 1120673.9 volts
Step-by-step explanation:
The de Broglie wavelength of an electron is given by the equation λ = h / (mv), where h is the Planck constant, m is the mass of the electron, and v is its velocity.
The kinetic energy of an electron can be calculated from the potential difference it is accelerated through, using the equation KE = qV, where q is the charge of the electron and V is the potential difference.
Setting these two equations equal to each other, we get λ = h / (mv) = h / √(2mKE).
Solving for V, we get V = KE / q = (h^2 / 2mq) / λ^2.
Substituting the given values, we get V = (6.626 x 10^-34 J.s)^2 / (2 x 9.109 x 10^-31 kg x 1.602 x 10^-19 C x (0.27 x 10^-9 m)^2)
Thus, V = 1120673.9 volts (approx).