Answer:
(10t + u)(10u + t) = 4,930
100tu + 10t^2 + 10u^2 + tu = 4,930
101tu + 10t^2 + 10u^2 = 4,930
10t^2 + (101u)t + (10u^2 - 4,930) = 0
(101u)^2 - 4(10)(10u^2 - 4,930)
= 10,201u^2 - 400u^2 + 197,200
= 9,801u^2 + 197,200
We see that u = 5 gives 442,225.
√442,225 = 665
(10t + 5)(50 + t) = 4,930
500t + 10t^2 + 250 + 5t = 4,930
10t^2 + 505t - 4,680 = 0
2t^2 + 101t - 936 = 0
t = (-101 + √(101^2 - 4(2)(-936)))/(2×2)
= (-101 + √17,689)/4
= (-101 + 133)/4 = 32/4 = 8
So the numbers are 58 and 85.
58 + 85 = 143