asked 11.7k views
2 votes
Which of the following statements best explains what happens if you increase the temperature of a gas inside a glass container?

A. As you increase the temperature of the gas the container itself will expand, causing the volume to increase. The larger volume of the
container means the gas particles have more space in which to move, which reduces the number of collisions. Fewer collisions results in a
lower pressure of the gas
B. If the container is rigid the volume of the container does not change (that is, the volume is constant). Since the volume of the gas does not
O change, Boyle's Laww tells us that the pressure of the gas will also not change because the equation P1V1=PZV2 does not depend on
temperature
C. As the temperature increases you are increasing the kinetic energy of the gas particles. As the gas particles move faster, they are more
Sikely to collide with the walls of the container. This increase in the number of collisions causes an increase in the pressure of the gas.
D. As you increase the temperature of the gas, the gas particles expand in size. Since each particle now occupies a larger volume, this means
the total gas also occupies a larger volume, which in tum increases the pressure.

1 Answer

4 votes

Answer:D. As you increase the temperature of the gas, the gas particles expand in size. Since each particle now occupies a larger volume, this means the total gas also occupies a larger volume, which in tum increases the pressure.

Step-by-step explanation:

answered
User Foo Bah
by
7.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.