Answer: The pressure in the container is 1949.5 torr when the volume is 7.20 liters and the temperature is 71.0 °C
Explanation: To solve this problem, we can use the combined gas law, which relates the initial and final conditions of pressure (P), volume (V), and temperature (T) for an ideal gas:
(P1 × V1) / T1 = (P2 × V2) / T2
where P1, V1, and T1 are the initial pressure, volume, and temperature, and P2, V2, and T2 are the final pressure, volume, and temperature.
We can plug in the given values:
P1 = 740.5 torr
V1 = 10.8 L
T1 = 23.0 °C + 273.15 = 296.15 K
V2 = 7.20 L
T2 = 71.0 °C + 273.15 = 344.15 K
(P1 × V1) / T1 = (P2 × V2) / T2
(740.5 torr × 10.8 L) / 296.15 K = (P2 × 7.20 L) / 344.15 K
Solving for P2:
P2 = (740.5 torr × 10.8 L × 344.15 K) / (296.15 K × 7.20 L)
P2 = 1949.5 torr
Therefore, the pressure in the container is 1949.5 torr when the volume is 7.20 liters and the temperature is 71.0 °C.