Answer:
Step-by-step explanation:
The ideal gas law is given by:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles of gas, R is the universal gas constant, and T is the temperature.
Rearranging the equation to solve for n, we get:
n = PV / RT
where:
P = 120 kPa
V = 32.4 L
R = 8.31 J/mol·K (universal gas constant)
T = 25°C + 273.15 = 298.15 K (temperature in kelvins)
Substituting the values:
n = (120 kPa * 32.4 L) / (8.31 J/mol·K * 298.15 K)
n = 1.34 mol (rounded to two significant figures)
Therefore, there are approximately 1.34 moles of He gas present in the given conditions.