asked 45.6k views
3 votes
Find inverse f(x)=x-3/x+4, g(x)=4x+3/1-x

asked
User Jbialobr
by
7.9k points

1 Answer

4 votes

Answer:

1984

________________________________________________________

Given:

To find the inverse of f(x), we first switch x and y and then solve for y. So, x = y-3/y+4, which we can rewrite as x(y+4) = y-3. Simplifying, we get xy + 4x = y-3, and then we can isolate y on one side: y-xy = 4x-3. Factoring out y on the left side, we get y(1-x) = 4x-3, and then we can divide both sides by (1-x) to get y = (4x-3)/(1-x). This is our inverse function.

Find:

To find the inverse of g(x), we follow the same process of switching x and y and solving for y. So, x = 4y+3/1-y, which we can rewrite as x(1-y) = 4y+3. Simplifying, we get -xy + y = 4x+3, and then we can isolate y on one side: y(-x+1) = 4x+3. Dividing both sides by (-x+1), we get y = (4x+3)/(-x+1). This is our inverse function.

Solve:

As for the given set of values, we have 187, 191, 202, 209, 218, and 1984. The outlier is obviously 1984, and its presence will not affect the range because the range is simply the difference between the largest and smallest values, which will be the same regardless of the presence of an outlier. However, the outlier will greatly affect the interquartile range, which is the difference between the upper and lower quartiles. This is because the upper and lower quartiles are the median of the upper half and lower half of the data, respectively, and including an outlier in one of these halves can greatly skew the median and thus the interquartile range.

answered
User Valerybodak
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.