Answer:
There are three ways to roll a sum of 4: (1,3), (2,2), and (3,1). There are 36 possible outcomes when rolling two dice because each die has 6 possible outcomes, so we multiply the number of outcomes of each die: 6 x 6 = 36.
Therefore, the probability of rolling a sum of 4 with two standard dice is:
P(D1 + D2 = 4) = number of ways to roll a sum of 4 / total number of outcomes
P(D1 + D2 = 4) = 3 / 36
Simplifying the fraction, we get:
P(D1 + D2 = 4) = 1 / 12
Therefore, the probability of rolling a sum of 4 with two standard dice is 1/12 or approximately 0.083.
Explanation:
in answer