Summary of Findings:
Hypothesis:
The hypothesis of this investigation was that the temperature of the ice would increase as heat was added, eventually leading to the ice melting and the water boiling.
Observations:
- The ice began to melt as heat was added.
- The temperature of the water increased steadily after the ice had melted, eventually reaching boiling point.
- Upon reaching boiling point, the temperature of the water remained constant.
Data:
1. Initial ice temperature: -5°C (example value)
2. Temperature of melting ice: 0°C
3. Boiling point of water: 100°C
Interpretation:
- The temperature of the ice increased as heat was added until it reached the melting point.
- The temperature remained constant at 0°C during the melting process.
- The temperature of the water began to rise after the ice had melted, eventually reaching the boiling point.
- The temperature remained constant at 100°C while the water boiled.
Graph:
The graph should show the temperature of the ice and water over time, indicating the constant temperatures during the melting and boiling processes.
Conclusion:
As heat was added, the temperature of the ice increased until it reached the melting point. During the melting process, the temperature remained constant at 0°C. After the ice had melted, the water's temperature increased until it reached the boiling point, where it remained constant at 100°C.
The heat was used to cause phase changes in the ice and water, first turning the ice into water, and then turning the water into vapor. These phase changes were evident on the graph, as the temperature remained constant during these processes.
There was room for human error in this investigation, as measurements could have been inaccurate, or heat may have been added inconsistently. Furthermore, external factors such as air temperature or air pressure could have influenced the results.
From this investigation, we learned that the heat added to the ice and water was used to cause phase changes, and that the temperature remained constant during these processes. This highlights the importance of understanding the role of heat in phase changes and the behavior of substances when they undergo these changes.