Answer: the answer is A=33∘, B=107.5∘, and C=39.5∘ is correct or c
Explanation:
To find the angles of triangle ABC with side lengths a=12, b=21, and c=14, we can use the Law of Cosines and then apply the Law of Sines to find the remaining angles. Let's denote the angles as A, B, and C respectively.
According to the Law of Cosines:
c^2 = a^2 + b^2 - 2ab * cos(C)
Plugging in the given side lengths:
14^2 = 12^2 + 21^2 - 2 * 12 * 21 * cos(C)
196 = 144 + 441 - 504 * cos(C)
504 * cos(C) = 389
cos(C) = 389 / 504
C = arccos(389 / 504)
Using a calculator to find the approximate value of C, we get C ≈ 43.5°.