(1) F(s) = 5+1 / (s^2 + 28s + 2)
To perform partial fraction expansion, we first need to factor the denominator:
s^2 + 28s + 2 = (s + 14 - sqrt(194))(s + 14 + sqrt(194))
We can then write:
F(s) = A / (s + 14 - sqrt(194)) + B / (s + 14 + sqrt(194))
where A and B are constants to be determined.
Multiplying both sides by the denominator and simplifying, we get:
5+1 = A(s + 14 + sqrt(194)) + B(s + 14 - sqrt(194))
Setting s = -14 - sqrt(194), we get:
5+1 = B(2sqrt(194))
Solving for B, we get:
B = (5+1) / (2sqrt(194))
Setting s = -14 + sqrt(194), we get:
5+1 = A(2sqrt(194))
Solving for A, we get:
A = (5+1) / (2sqrt(194))
Thus, the partial fraction expansion of F(s) is:
F(s) = [(5+1) / (2sqrt(194))] / (s + 14 + sqrt(194)) + [(5+1) / (2sqrt(194))] / (s + 14 - sqrt(194))
To find the inverse Laplace transform, we can use the table of Laplace transforms or MATLAB. Using MATLAB, we get:
ilaplace(F(s)) = (5+1) / (2sqrt(194)) * (exp(-14t) / sqrt(194)) * (cosh(sqrt(194)t) + sinh(sqrt(194)t))
(2) F(s) = s^2 + 3s + 1 / (s + 2)(s^2 + 8s + 1)
To perform partial fraction expansion, we first need to factor the denominator:
s^2 + 8s + 1 = (s + 4 - sqrt(15))(s + 4 + sqrt(15))
We can then write:
F(s) = A / (s + 2) + B / (s + 4 - sqrt(15)) + C / (s + 4 + sqrt(15))
where A, B, and C are constants to be determined.
Multiplying both sides by the denominator and simplifying, we get:
s^2 + 3s + 1 = A(s + 4 - sqrt(15))(s + 4 + sqrt(15)) + B(s + 2)(s + 4 + sqrt(15)) + C(s + 2)(s + 4 - sqrt(15))
Setting s = -4 + sqrt(15), we get:
-4 + sqrt(15) = A(-4 + sqrt(15) + 4 + sqrt(15))
Solving for A, we get:
A = (-4 + sqrt(15)) / (2sqrt(15))
Setting s = -4 - sqrt(15), we get:
-4 - sqrt(15) = A(-4 - sqrt(15) + 4 + sqrt(15))
Solving for A, we get:
A = (-4 - sqrt(15)) / (-2sqrt(15))
Setting s = -2, we get:
-1 = B(-2)(-2 + 4 + sqrt(15))
Solving for B, we get:
B = (-1) / (2sqrt(15) + 4)
Setting s =