So, the minimum sample size needed is 134 babies born during the 24th week of the gestation period.
To find the minimum sample size needed for the scientist to be 99% confident that her estimate is within 0.6 pounds of the true mean birth weight (μ), we can use the formula:
n = (Z × σ / E)²
where n is the sample size, Z is the Z-score corresponding to the desired confidence level (99%), σ is the standard deviation of the population (2.7 pounds), and E is the margin of error (0.6 pounds).
For a 99% confidence level, the Z-score is 2.576. Now, we can plug the values into the formula:
n = (2.576 × 2.7 / 0.6)²
n = (6.9456 / 0.6)²
n = 11.576²
n ≈ 133.76
Since the sample size should be a whole number, we need to round up to the nearest whole number to ensure the minimum requirement is met:
n ≈ 134