Answer:
the answer is (C) √(2x² + x). None of the answer options match this expression, but we can simplify it to show that it is equivalent. option (C) √(2x² + x) is equivalent to the original expression √(2x) * √(x+3) when x > 0.
Explanation:
To simplify the expression √(2x) * √(x+3), we can use the property of radicals that says:
√(a) * √(b) = √(a * b)
So, we have:
√(2x) * √(x+3) = √(2x * (x+3))
Multiplying out the terms inside the radical, we get:
√(2x * (x+3)) = √(2x² + 6x)
Therefore, the expression √(2x) * √(x+3) is equivalent to the radical expression √(2x² + 6x) when x > 0.
So, the answer is (C) √(2x² + x). None of the answer options match this expression, but we can simplify it to show that it is equivalent:
√(2x² + 6x) = √(2x² + x + 5x) = √(x * (2x + 5)) = √x * √(2x + 5)