Answer:
the answer is A) -2x² + 4x + 30
Explanation:
To find the equation of the quadratic function f(x), we can use the standard form of a quadratic function: f(x) = ax^2 + bx + c, where a, b, and c are constants.
We can plug in the values of x and f(x) from the table to get three equations:
a(-1)^2 + b(-1) + c = 24
a(0)^2 + b(0) + c = 30
a(1)^2 + b(1) + c = 32
Simplifying each equation, we get:
a - b + c = 24
c = 30
a + b + c = 32
We can substitute c = 30 into the first and third equations to get:
a - b + 30 = 24
a + b + 30 = 32
Simplifying these equations, we get:
a - b = -6
a + b = 2
Adding these two equations, we get:
2a = -4
Dividing by 2, we get:
a = -2
Substituting a = -2 into one of the equations above, we get:
-2 - b = -6
Solving for b, we get:
b = 4
Therefore, the equation that represents f(x) is:
f(x) = -2x^2 + 4x + 30
So the answer is A) -2x² + 4x + 30