Explanation:
f(x) = sin^-1(4x)
Using the chain rule, we have:
f'(x) = (1/√(1 - (4x)^2)) * d/dx(4x)
= (1/√(1 - (4x)^2)) * 4
= 4/√(1 - (4x)^2)
y = tan^-1(√(x-2))
Using the chain rule, we have:
y' = (1/ (1 + (√(x-2))^2)) * (1/2)(x-2)^(-1/2)
= 1 / (2√(x-2)(1 + x - 2))
= 1 / (2√(x-2)(x - 1))
y = (tan^−1(5x))^2
Using the chain rule and power rule, we have:
y' = 2(tan^−1(5x)) * d/dx(tan^−1(5x))
= 2(tan^−1(5x)) * (1/(1 + (5x)^2)) * 5
= 10(tan^−1(5x))/(1 + (5x)^2)
h(x) = e^(x^8+ln(x))
Using the chain rule and product rule, we have:
h'(x) = e^(x^8+ln(x)) * d/dx(x^8+ln(x))
= e^(x^8+ln(x)) * (8x^7 + 1/x)
= x^(15)e^(x^8) + e^(x^8)/x
y = ln(e^−x + xe^−x)
Using the chain rule and sum rule, we have:
y' = (1/(e^−x + xe^−x)) * d/dx(e^−x + xe^−x)
= (1/(e^−x + xe^−x)) * (-e^−x + e^−x - xe^−x)
= -1/(e^−x + xe^−x)
y = (cos(9x))^x
Using the chain rule and power rule, we have:
y' = (cos(9x))^x * d/dx(x * ln(cos(9x)))
= (cos(9x))^x * (ln(cos(9x)) + x * (-sin(9x)) * (1/cos(9x)) * 9)
= (cos(9x))^x * (ln(cos(9x)) - 9x * tan(9x))