asked 201k views
4 votes
Consider the function h(x) = a(−2x + 1)^5 − b, where a does not=0 and b does not=0 are constants.

A. Find h′(x) and h"(x).
B. Show that h is monotonic (that is, that either h always increases or remains constant or h always decreases or remains constant).
C. Show that the x-coordinate(s) of the location(s) of the critical points are independent of a and b.

1 Answer

4 votes

Answer:

A. To find the derivative of h(x), we can use the chain rule:

h(x) = a(-2x + 1)^5 - b

h'(x) = a * 5(-2x + 1)^4 * (-2) = -10a(-2x + 1)^4

To find the second derivative, we can again use the chain rule:

h''(x) = -10a * 4(-2x + 1)^3 * (-2) = 80a(-2x + 1)^3

B. To show that h is monotonic, we need to show that h'(x) is either always positive or always negative. Since h'(x) is a multiple of (-2x + 1)^4, which is always non-negative, h'(x) is always either positive or negative depending on the sign of a. If a > 0, then h'(x) is always negative, which means that h(x) is decreasing. If a < 0, then h'(x) is always positive, which means that h(x) is increasing.

C. To find the critical points, we need to find where h'(x) = 0:

h'(x) = -10a(-2x + 1)^4 = 0

-2x + 1 = 0

x = 1/2

Thus, the critical point is at x = 1/2. This value is independent of a and b, as neither a nor b appear in the calculation of the critical point.

answered
User Janhink
by
7.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.