Check the picture below.
so let's get the chord using the pythagorean theorem hmmm using sine

now let's get the arc
![\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180} ~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ \theta =70\\ r=5 \end{cases}\implies s=\cfrac{(70)\pi (5)}{180}\implies s\approx \text{\LARGE 6.11}](https://img.qammunity.org/2024/formulas/mathematics/high-school/pe0fs9rv82rdkws1xjzqodbmqbec4ubxys.png)
and the perimeters, keeping in mind that for the sector is just the arc plus the radii, and for the segment is simply the arc plus the chord.
