asked 47.7k views
1 vote
Each section of the graphic organizer contains a vocabulary term or the possible

solution type for the system shown. Use the list below to complete the graphic
organizer. Some terms may be used more than once.
slope y-intercept linear equations
infinitely many solutions no solution one solution
System of
y= 3x+ 2
y= - 4x+ 2
Different
y= 2x+ 7
y= 2x- 4
Same
y= 6x+ 3
y= - x- 4
Number of solutions:
y= 4x+ 3
y= 4x- 1
Different
y= 3x+ 6
y= 3x+ 6
Same
y= 4x+ 3
y= 4x- 1
Number of solutions:
y= 3x+ 6
y= 3x+ 6
Number of solutions:

1 Answer

6 votes

For the first equation with y = 3x + 2 and y = -4x + 2, the lines have the same slope, but a different y-intercept. This means that the lines are parallel and they will never intersect. Therefore, the system of equations has no solution.

For the second equation with y = 2x + 7 and y = 2x - 4, the lines have the same slope and the same y-intercept. This means that the lines are coincident and they will intersect at one point. Therefore, the system of equations has one solution.

For the third equation with y = 6x + 3 and y = -x - 4, the lines have a different slope and a different y-intercept. This means that the lines are not parallel and they will intersect at one point. Therefore, the system of equations has one solution.

For the fourth equation with y = 4x + 3 and y = 4x - 1, the lines have the same slope and the same y-intercept. This means that the lines are coincident and they will intersect at one point. Therefore, the system of equations has one solution.

For the fifth equation with y = 3x + 6 and y = 3x + 6, the lines have the same slope and the same y-intercept. This means that the lines are coincident and they will intersect at one point. Therefore, the system of equations

answered
User Allen More
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.