Answer:
To calculate the pressure of a gas using the ideal gas law, you can use the formula:
\[ PV = nRT \]
where:
- \( P \) is the pressure,
- \( V \) is the volume,
- \( n \) is the number of moles,
- \( R \) is the ideal gas constant (\(0.0821 \, \text{L} \cdot \text{atm} / \text{mol} \cdot \text{K}\)),
- \( T \) is the temperature in Kelvin.
First, convert the temperature from Celsius to Kelvin:
\[ T (\text{Kelvin}) = 25.0 + 273.15 = 298.15 \, \text{K} \]
Now, substitute the given values into the ideal gas law:
\[ P \times 2.8 \, \text{L} = (0.652 \, \text{mol}) \times (0.0821 \, \text{L} \cdot \text{atm} / \text{mol} \cdot \text{K}) \times (298.15 \, \text{K}) \]
Solve for \( P \):
\[ P = \frac{(0.652 \, \text{mol}) \times (0.0821 \, \text{L} \cdot \text{atm} / \text{mol} \cdot \text{K}) \times (298.15 \, \text{K})}{2.8 \, \text{L}} \]
\[ P \approx 4.91 \, \text{atm} \]
Therefore, the pressure in the 2.8 L container with 0.652 moles of oxygen gas at 25.0 °C is approximately 4.91 atm.
Step-by-step explanation: