Final answer:
To determine the power transmitted by an open belt drive, one must calculate the belt's linear velocity, the frictional force at the pulley interface, and use these values to compute the power.
Step-by-step explanation:
The question provided involves an open belt drive which is a common mechanical system. The key parameters given include the diameter of large and small pulleys, the rotational speed of the smaller pulley, the tension on the belt, the mass of the belt per unit length, and the coefficient of friction between the belt and the pulleys. To determine the power transmitted by the belt, we must calculate the velocity of the belt, the frictional force acting at the pulley interface, and then use these values to compute the power.
Since the smaller pulley has a diameter of 0.8 meters and rotates at 320 rpm (revolutions per minute), its linear velocity (v) can be calculated by the formula v = (π * d * n) / 60, where d is the diameter and n is the rpm. With the linear velocity and the frictional force (calculated by the product of tension, mass per unit length, and the coefficient of friction), we can then calculate the transmitted power using the formula Power = Frictional Force * velocity.