The measure of angle BAC in triangle ABC is 5 degrees.
In a triangle, the sum of its interior angles is always 180 degrees. Therefore, in triangle ABC, the sum of the angles BAC, ABC, and BCA is 180 degrees.
Given that the measure of triangle ABC is 70 degrees, we can find the measure of angle BAC by subtracting the sum of the measures of angles ABC and BCA from 180 degrees:
![\[ \text{Angle BAC} = 180^\circ - \text{Angle ABC} - \text{Angle BCA} \]](https://img.qammunity.org/2024/formulas/physics/high-school/9kfj3bkf8v2v5awzjett5v2yo1fchskxa8.png)
![\[ \text{Angle BAC} = 180^\circ - 70^\circ - 105^\circ \]](https://img.qammunity.org/2024/formulas/physics/high-school/1dqdvdqp57fc983b2zab7ls741b9m6q03r.png)
![\[ \text{Angle BAC} = 5^\circ \]](https://img.qammunity.org/2024/formulas/physics/high-school/yhj639djex6najzesnk8cyfhppditavcjb.png)
Therefore, the measure of angle BAC is 5 degrees.