Answer:
- the volume of the second tank is 1.77 m³
- the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa
Step-by-step explanation:
Given that; 
 = 1 m³
 = 1 m³
 = 10°C = 283 K
 = 10°C = 283 K
 = 350 kPa
 = 350 kPa
 = 3 kg
 = 3 kg
 = 35°C = 308 K
 = 35°C = 308 K
 = 150 kPa
 = 150 kPa
Now, lets apply the ideal gas equation;
 
 
 =
 = 
 R
R
 
 
 
 =
 = 
 R
R
 /
 / 
 
 
The gas constant of air R = 0.287 kPa⋅m³/kg⋅K
we substitute
 
 = ( 3 × 0.287 × 308) / 150
 = ( 3 × 0.287 × 308) / 150
 
 = 265.188 / 150
 = 265.188 / 150 
 
 = 1.77 m³
 = 1.77 m³
Therefore, the volume of the second tank is 1.77 m³
Also, 
 =
 = 

 / R
 / R
 = (350 × 1)/(0.287 × 283) = 350 / 81.221
 = (350 × 1)/(0.287 × 283) = 350 / 81.221
 = 4.309 kg
 = 4.309 kg
Total mass, 
 =
 = 
 +
 + 
 = 4.309 + 3 = 7.309 kg
 = 4.309 + 3 = 7.309 kg
Total volume 
 =
 = 
 +
 + 
 = 1 + 1.77 = 2.77 m³
 = 1 + 1.77 = 2.77 m³
Now, from ideal gas equation;
 =
 = 
 R
R
 /
 / 
 
 
given that; final temperature 
 = 20°C = 293 K
 = 20°C = 293 K
we substitute
 
 = ( 7.309 × 0.287 × 293) / 2.77
 = ( 7.309 × 0.287 × 293) / 2.77
 
 = 614.6211119 / 2.77
 = 614.6211119 / 2.77
 
 = 221.88 kPa ≈ 222 kPa
 = 221.88 kPa ≈ 222 kPa
Therefore, the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa