asked 110k views
0 votes
A football placekicker kicks the ball with a speed of 3 m/s at an angle of 30 degrees above the horizontal. how far does the ball travel horizontally from where the placekicker kicks it to where it lands on the ground?

1 Answer

5 votes

Final answer:

Using the equations of projectile motion, the horizontal distance traveled by the ball when kicked at a speed of 3 m/s at a 30-degree angle is approximately 1.47 meters.

Step-by-step explanation:

The question asks about the horizontal distance a football travels when kicked at a speed of 3 m/s at an angle of 30 degrees. To solve this, we can use the projectile motion equations. The horizontal distance, also known as the range, of a projectile is given by the formula:

  • Range (R) = (v2 × sin(2θ)) / g

where:

  • v is the initial velocity,
  • θ is the launch angle,
  • g is the acceleration due to gravity (9.81 m/s2 on Earth).

Plugging in the values given in the question:

  • Initial velocity (v) = 3 m/s,
  • Launch angle (θ) = 30 degrees,
  • Acceleration due to gravity (g) = 9.81 m/s2.

To find the range, we first need to convert the launch angle to radians as follows: 30 degrees = π/6 radians. We can then calculate the range as follows:

  • R = (3 m/s)2 × sin(2 × π/6) / 9.81 m/s2,
  • R = 9 × sin(π/3) / 9.81,
  • R = 9 × √3/2 / 9.81,
  • R ≈ 1.47 meters.

Thus, the ball travels approximately 1.47 meters horizontally from where the placekicker kicks it to where it lands on the ground.

answered
User Cleverpaul
by
8.3k points