Final answer:
To evaluate the indefinite integral x⁸ / (81-x²)¹1/2, use the substitution u = 81 - x² and solve the integral step by step.
Step-by-step explanation:
To evaluate the indefinite integral ∫x⁰ / (81 - x²)¹⁄⁰, we can use the substitution u = 81 - x². This transforms the integral into ∫(81 - u)¹⁄⁰du. Let's proceed with the substitution and solve the integral step by step:
- Substitute u = 81 - x²:
∫(81 - x²)¹⁄⁰ dx = ∫u¹⁄⁰ dx
- Calculate du/dx and solve for dx:
du/dx = -2x, dx = -½ du/x
- Substitute the new variables and simplify the integral:
∫(81 - u)¹⁄⁰ du = ∫(81 - u)¹⁄⁰(-½ du/x)
= -½∫(81 - u)¹⁄⁰ du
- Integrate with respect to u:
= -½(u/2) + C
- Undo the substitution:
= -½((81 - x²)/2) + C
= -½(6561 - 162x² + x⁰/2) + C