asked 219k views
1 vote
Pls help asap question in attachment

Pls help asap question in attachment-example-1

2 Answers

0 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Let's use similarity here :

The given triangles are similar to one another by AA criteria, since they are parallel, hence two of the angles of 1st triangle are equal to that of 2nd triangle.

that is :


\qquad \sf\angle EKP = \angle EHL \: \: \: (corrosponding)


\qquad \sf\angle EPK = \angle ELH \: \: \: (corrosponding)

so,


\therefore \qquad \sf\triangle EKP \sim \triangle EHL \: \: \: \: (aa \: \: criteria)

Now, let's use its results ~


\therefore \sf \qquad(EK)/(EH) = (EP)/(EL)

10 votes

Answer:

Explanation:

they are similar triangles and angle EKP and EHL is 90 and angle HEL and KEP is the same so the angles of triangle KEP and HEL are the same and they are similar to each other.

answered
User Clanket
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.