Final answer:
To calculate the residual for each coordinate pair given the line of best fit, substitute the x-value into the equation and subtract the predicted y-value from the actual y-value. For example, for (5, 8.8), the residual is -9.32.
Step-by-step explanation:
To calculate the residual for each of the coordinate pairs (x, y) given the line of best fit, we need to substitute the x-value into the equation of the line and subtract the predicted y-value from the actual y-value.
- For (5, 8.8):
Substituting x=5 into the equation: y = 1.12 + 3.4(5) = 1.12 + 17 = 18.12
Residual = Actual y - Predicted y = 8.8 - 18.12 = -9.32 - For (2.5, 5.95):
Substituting x=2.5 into the equation: y = 1.12 + 3.4(2.5) = 1.12 + 8.5 = 9.62
Residual = Actual y - Predicted y = 5.95 - 9.62 = -3.67 - For (0, 3.72):
Substituting x=0 into the equation: y = 1.12 + 3.4(0) = 1.12 + 0 = 1.12
Residual = Actual y - Predicted y = 3.72 - 1.12 = 2.6 - For (1.5, 5.05):
Substituting x=1.5 into the equation: y = 1.12 + 3.4(1.5) = 1.12 + 5.1 = 6.22
Residual = Actual y - Predicted y = 5.05 - 6.22 = -1.17 - For (-3, 0):
Substituting x=-3 into the equation: y = 1.12 + 3.4(-3) = 1.12 + (-10.2) = -9.08
Residual = Actual y - Predicted y = 0 - (-9.08) = 9.08 - For (-5, -4.86):
Substituting x=-5 into the equation: y = 1.12 + 3.4(-5) = 1.12 + (-17) = -15.88
Residual = Actual y - Predicted y = -4.86 - (-15.88) = 11.02