asked 146k views
4 votes
Order the simplification steps of the expression below using the properties of rational exponents.

√567z yll
(567zy¹¹)
3. 2². 1². (71.2².²)
(81-7). z.
3z²y² (7zy³)
3z²y √7zy²³
(81)
.
(7) (+), y(+1)
(34) 712(2+1), (²+1)
3¹. 7. 2². 2. v.
.
.

Order the simplification steps of the expression below using the properties of rational-example-1
asked
User Terales
by
8.4k points

1 Answer

0 votes

The correct order for simplifying the expression
\(\sqrt[4]{567x^9 \cdot y^(11)}\) using the properties of rational exponents is:
1. \((567x^9 \cdot y^(11))^(1/4)\). 2. \(3x^2 \cdot y^2 \cdot (7^(1/4) \cdot x^(1/4) \cdot y^(3/4))\). 3. \((81 \cdot 7)^(1/4) \cdot x^(9/4) \cdot y^(11/4)\). 4. \(3x^2 \cdot y^2 \cdot (7x \cdot y^3)^(1/4)\). 5. \(3x^2 \cdot y^2 \cdot \sqrt[4]{7x \cdot y^3}\). 6. \((81)^(1/4) \cdot (7)^(1/4) \cdot x^(2 + 1/4) \cdot y^(2 + 3/4)\). 7. \((3^4)^(1/4) \cdot 7^(1/4) \cdot x^(2 + 1/4) \cdot y^(2 + 3/4)\). 8. \(3^(1-4) \cdot 7^(1/4) \cdot x^2 \cdot x^(1/4) \cdot y^2 \cdot y^(3/4)\)

First, we rewrite
\(\sqrt[4]{567x^9 \cdot y^(11)}\) as
\((567x^9 \cdot y^(11))^(1/4)\). Then, we apply the rules: simplify the numbers inside the parentheses, distribute the exponent to each term, and combine like terms. This results in expressions with smaller exponents. The correct steps ensure that we handle each part of the expression properly, leading to the simplified form.

1.
\((567x^9 \cdot y^(11))^(1/4)\)

2.
\(3x^2 \cdot y^2 \cdot (7^(1/4) \cdot x^(1/4) \cdot y^(3/4))\)

3.
\((81 \cdot 7)^(1/4) \cdot x^(9/4) \cdot y^(11/4)\)

4.
\(3x^2 \cdot y^2 \cdot (7x \cdot y^3)^(1/4)\)

5.
\(3x^2 \cdot y^2 \cdot \sqrt[4]{7x \cdot y^3}\)

6.
\((81)^(1/4) \cdot (7)^(1/4) \cdot x^(2 + 1/4) \cdot y^(2 + 3/4)\)

7.
\((3^4)^(1/4) \cdot 7^(1/4) \cdot x^(2 + 1/4) \cdot y^(2 + 3/4)\)

8.
\(3^(1-4) \cdot 7^(1/4) \cdot x^2 \cdot x^(1/4) \cdot y^2 \cdot y^(3/4)\)

These steps correctly simplify the expression using the properties of rational exponents.

answered
User Bryce Hahn
by
8.8k points

Related questions

1 answer
1 vote
184k views
asked Jan 28, 2021 179k views
Ijaz Ahmed asked Jan 28, 2021
by Ijaz Ahmed
8.2k points
1 answer
4 votes
179k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.