asked 221k views
1 vote
If cosx=1/12 and sinx>0 find tan2x

1 Answer

2 votes

cosx=(1)/(12)\\\\sin^2x+cos^2x=1\\\\sin^2x+\left((1)/(12)\right)^2=1\\\\sin^2x+(1)/(144)=1\\\\sin^2x=1-(1)/(144)\\\\sin^2x=(144)/(144)-(1)/(144)\\\\sin^2x=(143)/(144)\\\\sinx=\sqrt(143)/(144)\\\\sinx=(√(143))/(12)



tan2x=(sin2x)/(cos2x)\\\\sin2x=2sinxcosx;\ cos2x=cos^2x-sin^2x\\\\sin2x=2\cdot(√(143))/(12)\cdot(1)/(12)=(2√(143))/(144)\\\\cos2x=\left((1)/(12)\right)^2-\left((√(143))/(12)\right)^2=(1)/(144)-(143)/(144)=-(142)/(144)\\\\tan2x=(2√(143))/(144):\left(-(142)/(144)\right)=-(2√(143))/(144)\cdot(144)/(142)=-(√(143))/(71)
answered
User Keval Mangukiya
by
7.5k points

Related questions

1 answer
3 votes
134k views
asked Feb 16, 2022 234k views
Akbarbin asked Feb 16, 2022
by Akbarbin
7.6k points
1 answer
4 votes
234k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.