Answer:
![\displaystyle (d)/(dx)[x^x] = x^x[\ln (x) + 1]](https://img.qammunity.org/2017/formulas/mathematics/college/hdbovt3lzgjzcq88digle3xmbu0tnmg4gs.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2017/formulas/mathematics/college/dikzs03wqskd60dnckjk0orir7l5wq9o6l.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2017/formulas/mathematics/high-school/5gyznprxgvpgbqhksqa20f0tupnkb4vxej.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Rewrite:

- Exponential Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y = e^\big{x\ln x} \cdot (d)/(dx)[x\ln x]](https://img.qammunity.org/2017/formulas/mathematics/college/yb32jflo475srvjrzixw6msj4r5x6tzyeu.png)
- Derivative Rule [Product Rule]:
![\displaystyle y = e^\big{x\ln x}[(x)'\ln x + x(\ln x)']](https://img.qammunity.org/2017/formulas/mathematics/college/pksbtkxqpwta3j1v4anavri36o8zo1qzyi.png)
- Basic Power Rule/Logarithmic Differentiation:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation