∫ [ln(√t) / t] dx 
 let √t = u 
t= u² → dx = 2u du 
 substitute in the integral
 ∫ [ln(√t) / t] dx = ∫ (ln u / u²) 2u du = ∫ (ln u / u²) 2u du = 2 ∫ (ln u / u) du 
 let ln u = x → d (ln u) = dx→ (1/u)du = dx
 substituting again
 2 ∫ (ln u / u) du = 2 ∫ x dx= 2 x²/ 2 = x² + c which, 
substituting ln² u + c 
as of the first substitution ln²(√t) + c 
it concludes that
 ∫ [ln(√t) / t] dx = ln²(√t) + c 
hope it helps