asked 50.1k views
1 vote
2logxbase5 3logybase3=8
and
6logxbase5 2logybase3=2
solve silmultaneously

1 Answer

2 votes

2\log_5{x}+3\log_3{y}=8 \ . \ . \ . \ (1)\\6\log_5{x}+2\log_3{y}=2 \ . \ . \ . \ (2)\\ \\ (1)*3:6\log_5{x}+9\log_3{y}=24 \ . \ . \ . \ (3) \\ \\ (3)-(2):7\log_3{y}=22\\ \log_3y=(22)/(7)\\3^(\log_3y)=3^{(22)/(7)}=31.59\\y=31.59\\ \\ From \ (1), 2\log_5{x}+3\log_3{31.59}=8\\2\log_5{x}=8-9.429=-1.429\\ \log_5{x}= -(1.429)/(2) =-0.7143\\5^{\log_5{x}}=5^(-0.7143)\\x=0.3168

Therefore, x = 0.3168 and y = 31.59
answered
User Piya
by
9.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.