asked 130k views
0 votes
Prove the identity secxcscx(tanx+cotx)=2+tan^2x+cot^2x

1. apply the distributive property
2. apply the definitions of secant, cosecant, tangent, and cotangent
3. simplify the expressions
4. apply the definitions of secant and cosecant
5. apply the pythagorean identities
6. simply the expressions

asked
User Keerthee
by
7.4k points

2 Answers

2 votes
sec(x)csc(x)[tan(x) + cot(x)] = 2 + tan²(x) + cot²(x)
sec(x)csc(x)[tan(x)] + sec(x)csc(x)[cot(x)] = 2 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 2 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 1 + 1 + tan²(x) + cot²(x)
sec²(x) + csc²(x) = 1 + tan²(x) + 1 + cot²(x)
sec²(x) + csc²(x) = sec²(x) + csc²(x)
answered
User Shubhank
by
8.8k points
7 votes
Hello,


sec(x)= (1)/(cos(x)) \\ cosec(x)= (1)/(sin(x)) \\ sec(x)*cosec(x)*(tg(x)+cotg(x))=(1)/(cos(x))* (1)/(sin(x))*( (sin(x))/(cos(x)) +(cos(x))/(sin(x)))\\ = (sin^2(x)+cos^2(x))/(sin^2x*cos^2x) \\ = (1)/(sin^2x*cos^2x) \\
==============================================================

2+tg^2(x)+cotg^2(x)=2+ (sin^2x)/(cos^2x) + (cos^2x)/(sin^2x) \\ =2+ (sin^4x+cos^4x)/(sin^2x*cos^2x) \\ =(2*sin^2x*cos^2x+sin^4x+cos^4x)/(sin^2x*cos^2x) \\ = ((sin^2x+cos^2x)^2)/(sin^2x*cos^2x)} \\ = (1)/(sin^2x*cos^2x)}
answered
User Alaa Badran
by
7.7k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.