asked 140k views
3 votes
Verify the identity:

cos 4x + cos 2x = 2 - 2 sin2 2x - 2 sin2 x

asked
User Yanhan
by
7.8k points

2 Answers

1 vote
By using trigonometric identities, we can solve the identity given above. We just need to work on one side and make it equal to the other side. We choose the right side:

2−2sin2(2x)−2sin2(x)=1+1−2sin2(2x)−2sin2(x) = (1−2sin2(2x))+(1−2sin2(x)) + (1−2sin2(2x))+(1−2sin2(x)) =cos(4x)+cos(2x)

cos 4x + cos 2x = cos 4x + cos 2x
answered
User Ahmed Contrib
by
8.4k points
3 votes

\\ sin^2 \alpha +cos^2 \alpha =1 \\ cos2 \alpha =1-2sin^2 \alpha \\cos( \alpha + \beta )=cos \alpha cos \beta -sin \alpha sin \beta \\ \\ cos4x=cos(2x+2x)=cos2xcos2x-sin2xsin2x = \\ =cos^22x-sin^22x \\ cos^22x=1-sin^22x \\ cos^22x-sin^22x=1-sin^22x-sin^22x=1-2sin^22x \\ cos4x=1-2sin^22x \\ cos2x =1-2sin^2x \\ \\ cos4x+cos2x=1-2sin^22x+1-2sin^2x= \\ =2-2sin^22x-2sin^2x \\ \\ cos4x+cos2x=2-2sin^22x-2sin^2x
answered
User Nitin Gohel
by
8.4k points

Related questions

1 answer
5 votes
102k views
2 answers
1 vote
122k views
asked Jul 11, 2021 28.3k views
Leostiw asked Jul 11, 2021
by Leostiw
8.3k points
1 answer
5 votes
28.3k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.