asked 2.3k views
4 votes
Evaluate the integral of xe^(-5x) dx using integrate by parts.

1 Answer

5 votes

Answer:


\displaystyle \int {xe^(-5x)} \, dx = -e^(-5x) \bigg( (x)/(5) + (1)/(25) \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {xe^(-5x)} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = x
  2. [u] Differentiate [Derivative Rule - Basic Power Rule]:
    \displaystyle du = dx
  3. Set dv:
    \displaystyle dv = e^(-5x) \ dx
  4. [dv] Integrate [Exponential Integration, U-Substitution]:
    \displaystyle v = (-e^(-5x))/(5)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by parts:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) - \int {(-e^(-5x))/(5)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) + (1)/(5) \int {e^(-5x)} \, dx

Step 4: Integrate Pt. 3

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = -5x
  2. [u] Differentiate [Derivative Property, Basic Power Rule]:
    \displaystyle du = -5 \ dx

Step 5: Integrate Pt. 4

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) - (1)/(25) \int {-5e^(-5x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) - (1)/(25) \int {e^u} \, du
  3. [Integral] Exponential Integration:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) - (e^u)/(25) + C
  4. [u] Back-Substitute:
    \displaystyle \int {xe^(-5x)} \, dx = (-xe^(-5x))/(5) - (e^(-5x))/(25) + C
  5. Factor:
    \displaystyle \int {xe^(-5x)} \, dx = -e^(-5x) \bigg( (x)/(5) + (1)/(25) \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

answered
User Rome Torres
by
8.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.