asked 165k views
7 votes
Write the negation of each of the following logical expressions so that all negations immediately precede predicates. In some cases, it may be necessary to apply one or more laws of propositional logic.

a. ∃x ∀y(P(x,y) → Q(x,y))
b. ∃x ∀y(P(x,y) → P(y,x))
c. ∃x ∃y P(x,y) ∧ ∀x ∀y Q(x,y)

asked
User Rsbarro
by
8.0k points

1 Answer

7 votes

Answer:

a. Negation of ∃x ∀y(P(x,y) → Q(x,y)) = ∀x ∃y P(x,y) ∧ ¬Q(x,y) ]

b. Negation of ∃x ∀y(P(x,y) → P(y,x)) = ∀x ∃y [ ¬P(x,y) ∨ ¬P(y,x) ] ∧ [P(x,y) ∨ P(y,x)]

c. Negation of ∃x ∃y P(x,y) ∧ ∀x ∀y Q(x,y) = ∀x ∀y ¬ [P(x,y)] ∨ ∃x ∃y ¬ [Q(x,y)]

Explanation:

a.∃x ∀y(P(x,y) → Q(x,y))

Negation = ¬ [ ∃x ∀y(P(x,y) → Q(x,y)) ]

= ∀x ¬ [ ∀y(P(x,y) → Q(x,y)) ]

= ∀x ∃y ¬ [ (P(x,y) → Q(x,y)) ]

= ∀x ∃y ¬ [ ¬P(x,y) ∨ Q(x,y) ]

= ∀x ∃y P(x,y) ∧ ¬Q(x,y) ]

Negation of ∃x ∀y(P(x,y) → Q(x,y)) = ∀x ∃y P(x,y) ∧ ¬Q(x,y) ]

b. ∃x ∀y(P(x,y) → P(y,x))

Negation = ¬ [ ∃x ∀y(P(x,y) → P(y,x)) ]

= ∀x ¬ [ ∀y(P(x,y) → P(y,x)) ]

= ∀x ∃y ¬ [ (P(x,y) → P(y,x)) ]

= ∀x ∃y ¬ [ ( P(x,y) ∧ P(y,x) ) ∨ ( ¬P(x,y) ∧ ¬P(y,x) )]

= ∀x ∃y ¬ [ P(x,y) ∧ P(y,x) ] ∧ ¬[ ¬P(x,y) ∧ ¬P(y,x) ]

= ∀x ∃y [ ¬P(x,y) ∨ ¬P(y,x) ] ∧ [ P(x,y) ∨ P(y,x) ]

∴ we get

Negation of ∃x ∀y(P(x,y) → P(y,x)) = ∀x ∃y [ ¬P(x,y) ∨ ¬P(y,x) ] ∧ [P(x,y) ∨ P(y,x)]

c. ∃x ∃y P(x,y) ∧ ∀x ∀y Q(x,y)

Negation = ¬ [ ∃x ∃y P(x,y) ∧ ∀x ∀y Q(x,y) ]

= ¬ [ ∃x ∃y P(x,y) ] ∨ ¬ [ ∀x ∀y Q(x,y) ]

= ∀x¬ [ ∃y P(x,y) ] ∨ ∃x ¬ [ ∀y Q(x,y) ]

= ∀x ∀y ¬ [ P(x,y) ] ∨ ∃x ∃y ¬ [ Q(x,y) ]

∴ we get

Negation of ∃x ∃y P(x,y) ∧ ∀x ∀y Q(x,y) = ∀x ∀y ¬ [ P(x,y) ] ∨ ∃x ∃y ¬ [ Q(x,y) ]

answered
User LearningSlowly
by
8.2k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.