asked 146k views
1 vote
Simplify the expression: 1/1+cot^2x

a.sec^2x
b.csc^2x
c.sin^2x
d.cos^2x
e.tan^2x

1 Answer

4 votes

\sin ^( 2 ){ x } +\cos ^( 2 ){ x } =1\\ \\ \frac { \sin ^( 2 ){ x } }{ \sin ^( 2 ){ x } } +\frac { \cos ^( 2 ){ x } }{ \sin ^( 2 ){ x } } =\frac { 1 }{ \sin ^( 2 ){ x } } \\ \\ 1+\cot ^( 2 ){ x } =\csc ^( 2 ){ x }

Because of this...


\frac { 1 }{ 1+\cot ^( 2 ){ x } } \\ \\ =\frac { 1 }{ \csc ^( 2 ){ x } }

But...


\frac { 1 }{ \csc ^( 2 ){ x } } =\sin ^( 2 ){ x }

Therefore:


\frac { 1 }{ 1+\cot ^( 2 ){ x } } =\sin ^( 2 ){ x }

Answer:

(c)
answered
User Mudit Gulgulia
by
8.7k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.