asked 82.2k views
3 votes
Simplify the given expression and assume that no variable equals zero. And show your work, please.

Simplify the given expression and assume that no variable equals zero. And show your-example-1
asked
User LvN
by
8.2k points

1 Answer

2 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\ -------------------------------\\\\ \left( \cfrac{32x^(18)y^(10)}{16x^9y^(20)} \right)^2\impliedby \textit{first off, let's distribute the exponent} \\\\\\


\bf \left( \cfrac{32^2x^(2\cdot 18)y^(2\cdot 10)}{16^2x^(2\cdot 9)y^(2\cdot 20)} \right)\implies \cfrac{32^2x^(36)y^(20)}{16^2x^(18)y^(40)}\implies \cfrac{32^2x^(36)x^(-18)}{16^2y^(-20)y^(40)} \\\\\\


\bf \cfrac{32^2x^(36-18)}{16^2y^(-20+40)} \implies \cfrac{32^2x^(18)}{16^2y^(20)}\implies \cfrac{32\cdot 32}{16\cdot 16}\cdot \cfrac{x^(18)}{y^(20)}\implies \cfrac{32}{16}\cdot \cfrac{32}{16}\cdot \cfrac{x^(18)}{y^(20)} \\\\\\ \cfrac{2}{1}\cdot \cfrac{2}{1}\cdot \cfrac{x^(18)}{y^(20)}\implies \cfrac{4x^(18)}{y^(20)}
answered
User Timothy Vogel
by
8.8k points

No related questions found