asked 25.0k views
5 votes
Let , −5−6 be a point on the terminal side of θ . find the exact values of cosθ , cscθ , and tanθ .

1 Answer

3 votes
Given that point (-5, -6) is a point on the terminal side of θ. Since both the x coordinate and the y-coordinate are negative, θ is in the third quadrant.

The side opposite
θ is -6 and the side adjacent θ is -5.

The hypothenus is given by
√((-6)^+(-5)^2)=√(36+25)=√(61)

The exact value of cos
θ is given by:


\cos\theta= (adjacent)/(hypothenuse) = (-5)/(√(61))

The exact value of cscθ is given by:


\csc\theta= (hypothenuse)/(opposite) = (√(61))/(-6)


The exact value of tanθ is given by:


\tan\theta= (opposite)/(adjacent) = (-6)/(-5) =1.2

answered
User Exploit
by
8.1k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.