asked 189k views
4 votes
Rewrite 1/x^-3/6 in simplest radical form. show each step of your process

asked
User ThibThib
by
7.5k points

1 Answer

3 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\\\ \textit{also recall that }a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)}\\\\ -------------------------------


\bf \cfrac{1}{x^{-(3)/(6)}}\implies \cfrac{1}{\frac{1}{x^{(3)/(6)}}}\implies \cfrac{(1)/(1)}{\frac{1}{x^{(3)/(6)}}}\implies \cfrac{1}{1}\cdot \cfrac{x^{(3)/(6)}}{1}\implies x^{(3)/(6)}\implies x^{(1)/(2)}\implies \sqrt[2]{x^1} \\\\\\ √(x)
answered
User Itay
by
7.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.