asked 163k views
3 votes
Find the dimensions of a rectangle with perimeter 100m area of 336

1 Answer

1 vote
Start by writing out the formulas for perimeter and area:
P=2L+2W A=L*W

We know that A = L*W = 336 sq meters and that P=2L + 2W = 100m.

Let's solve the first equation for L: L = 336/W

Subst. this into the formula for perimeter: 2[336/W] + 2W = 100 m (given)

Now all you have to do is to solve this for W:

336/W + W = 50 becomes 336 + W^2 = 50W.

Then W^2 - 50W + 336 = 0. Using the quadratic formula, I found that
50 plus or minus sqrt (1156) 50 plus or minus 34
W = ---------------------------------------- = -------------------------------
2 2

W has to be positive. Thus, choose W = (50+34) / 2 = 42

Then L = 336 / W, or 336 / 42, or 8.

The dimensions of this rectangle are 8 by 42.

You should check these results. Does P = 2(8) + 2(42) = 100 ?


answered
User Lucamug
by
7.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.