asked 108k views
1 vote
Find the exact value of tan75

This is a question from sum and differences of trigs so it must include that. I've tried multiple things and nothing has given me one of the options for answers.

asked
User Arendjr
by
7.9k points

1 Answer

2 votes

\bf tan({{ \alpha}} + {{ \beta}}) = \cfrac{tan({{ \alpha}})+ tan({{ \beta}})}{1- tan({{ \alpha}})tan({{ \beta}})}\\\\ -------------------------------\\\\ tan(75^o)\implies tan(45^o+30^o)=\cfrac{tan(45^o)+tan(30^o)}{1-tan(45^o)tan(30^o)} \\\\\\ tan(45^o+30^o)=\cfrac{(sin(45^o))/(cos(45^o))+(sin(30^o))/(cos(30^o))}{1-(sin(45^o))/(cos(45^o))\cdot (sin(30^o))/(cos(30^o))}


\bf tan(45^o+30^o)=\cfrac{((√(2))/(2))/((√(2))/(2))+((1)/(2))/((√(3))/(2))}{1-((√(2))/(2))/((√(2))/(2))\cdot ((1)/(2))/((√(3))/(2))} \implies tan(45^o+30^o)=\cfrac{1+(1)/(√(3))}{1-1\cdot (1)/(√(3))}


\bf tan(45^o+30^o)=\cfrac{(√(3)+1)/(√(3))}{1-(1)/(√(3))}\implies tan(45^o+30^o)=\cfrac{(√(3)+1)/(√(3))}{(√(3)-1)/(√(3))} \\\\\\ tan(45^o+30^o)=\cfrac{√(3)+1}{√(3)}\cdot \cfrac{√(3)}{√(3)-1}\implies tan(45^o+30^o)=\cfrac{√(3)+1}{√(3)-1}


so... let's rationalize the denominator.. now, the denominator is √(3) - 1, so, we'll use her conjugate, √(3) + 1, and multiply top and bottom by it, so we end up with a "difference of squares" at the bottom, so, let's do so.


\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------\\\\


\bf \cfrac{√(3)+1}{√(3)-1}\cdot \cfrac{√(3)+1}{√(3)+1}\implies \cfrac{(√(3)+1)(√(3)+1)}{(√(3)-1)(√(3)+1)}\implies \cfrac{(√(3)+1)^2}{(√(3))^2-(1)^2} \\\\\\ \cfrac{(√(3)+1)^2}{3-1}\implies \cfrac{(√(3))^2+2√(3)+1^2}{2}\implies \cfrac{3+2√(3)+1}{2} \\\\\\ \cfrac{4+2√(3)}{2}\implies \cfrac{\underline{2}(2+√(3))}{\underline{2}}\implies 2+√(3)
answered
User Patrick Stalph
by
8.3k points

Related questions

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.