asked 188k views
2 votes
Help with this integral


\int\limits (dx)/(x^(2)-4x-13)

1 Answer

7 votes

x^2-4x-13=(x-2)^2-17


x-2=√(17)\sec y

\mathrm dx=√(17)\sec y\tan y\,\mathrm dy


\displaystyle\int(\mathrm dx)/(x^2-4x-13)=\int(√(17)\sec y\tan y)/((√(17)\sec y)^2-17)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y\tan y)/(\sec^2y-1)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y\tan y)/(\tan^2y)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int(\sec y)/(\tan y)\,\mathrm dy

=\displaystyle\frac1{√(17)}\int\frac{\frac1{\cos y}}{(\sin y)/(\cos y)}\,\mathrm dy

=\displaystyle\frac1{√(17)}\int\csc y\,\mathrm dy

=-\frac1{√(17)}\ln|\csc y+\cot y|+C


\sec y=(x-2)/(√(17))\iff y=\sec^(-1)(x-2)/(√(17))

\implies\csc y=(x-2)/(√((x-2)^2-17))=(x-2)/(√(x^2-4x-13))

\implies\cot y=(√(17))/(√((x-2)^2-17))=(√(17))/(√(x^2-4x-13))


\displaystyle\int(\mathrm dx)/(x^2-4x-13)=-\frac1{√(17)}\ln\left|(x-2+√(17))/(√(x^2-4x-13))\right|+C
answered
User Ryan Amies
by
8.2k points

No related questions found