asked 106k views
2 votes
This is not really a question because I already know the answer to it but I will give 34 points for someone that can answer this. What is the definite integral from 1 to ∞ for the function e^-x (derivative with respect to x).

1 Answer

1 vote

Answer:


\displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = (1)/(e)

General Formulas and Concepts:

Calculus

Limits

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Limit Property [Multiplied Constant]:
\displaystyle \lim_(x \to c) bf(x) = b \lim_(x \to c) f(x)

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) \int\limits^b_1 {e^(-x)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = -x
  2. [u] Differentiate [Basic Power Rule, Derivative Properties]:
    \displaystyle du = -dx
  3. [Bounds] Switch:
    \displaystyle \left \{ {{x = b ,\ u = -b} \atop {x = 1 ,\ u = -1}} \right.

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) -\int\limits^b_1 {-e^(-x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) -\int\limits^(-b)_(-1) {e^u} \, du
  3. [Integral] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \int\limits^(-b)_(-1) {e^u} \, du
  4. [Integral] Exponential Integration:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) e^u \bigg| \limits^(-b)_(-1)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \big( e^(-b) - e^(-1) \big)
  6. Rewrite:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \bigg( (1)/(e^b) - (1)/(e) \bigg)
  7. Evaluate limit:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\bigg( 0 - (1)/(e) \bigg)
  8. Simplify:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = (1)/(e)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

answered
User Amaurys
by
7.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.