asked 155k views
1 vote
Can anyone help me integrate :


\int\limits { (x*(2 x^2 + 6 x + 1))/(√(x^2 + 4 x + 1)) } \, dx

asked
User Muppet
by
8.0k points

1 Answer

2 votes
Rewrite the second factor in the numerator as


2x^2+6x+1=2(x+2)^2-2(x+2)-3

Then in the entire integrand, set
x+2=\sqrt3\sec t, so that
\mathrm dx=\sqrt3\sec t\tan t\,\mathrm dt. The integral is then equivalent to


\displaystyle\int((\sqrt3\sec t-2)(6\sec^2t-2\sqrt3\sec t-3))/(√((\sqrt3\sec t)^2-3))(\sqrt3\sec t)\,\mathrm dt

=\displaystyle\int((6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t)/(√(\sec^2t-1))\,\mathrm dt

=\displaystyle\int((6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t)/(√(\tan^2t))\,\mathrm dt

=\displaystyle\int((6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t)/(|\tan t|)\,\mathrm dt

Note that by letting
x+2=\sqrt3\sec t, we are enforcing an invertible substitution which would make it so that
t=\mathrm{arcsec}(x+2)/(\sqrt3) requires
0\le t<\frac\pi2 or
\frac\pi2<t\le\pi. However,
\tan t is positive over this first interval and negative over the second, so we can't ignore the absolute value.

So let's just assume the integral is being taken over a domain on which
\tan t>0 so that
|\tan t|=\tan t. This allows us to write


=\displaystyle\int((6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\sec t)/(\tan t)\,\mathrm dt

=\displaystyle\int(6\sqrt3\sec^3t-18\sec^2t+\sqrt3\sec t+6)\csc t\,\mathrm dt

We can show pretty easily that


\displaystyle\int\csc t\,\mathrm dt=-\ln|\csc t+\cot t|+C

\displaystyle\int\sec t\csc t\,\mathrm dt=-\ln|\csc2t+\cot2t|+C

\displaystyle\int\sec^2t\csc t\,\mathrm dt=\sec t-\ln|\csc t+\cot t|+C

\displaystyle\int\sec^3t\csc t\,\mathrm dt=\frac12\sec^2t+\ln|\tan t|+C

which means the integral above becomes


=3\sqrt3\sec^2t+6\sqrt3\ln|\tan t|-18\sec t+18\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|-6\ln|\csc t+\cot t|+C

=3\sqrt3\sec^2t-18\sec t+6\sqrt3\ln|\tan t|+12\ln|\csc t+\cot t|-\sqrt3\ln|\csc2t+\cot2t|+C

Back-substituting to get this in terms of
x is a bit of a nightmare, but you'll find that, since
t=\mathrm{arcsec}(x+2)/(\sqrt3), we get


\sec t=(x+2)/(\sqrt3)

\sec^2t=\frac{(x+2)^2}3

\tan t=\sqrt{\frac{x^2+4x+1}3}

\cot t=\sqrt{\frac3{x^2+4x+1}}

\csc t=(x+2)/(√(x^2+4x+1))

\csc2t=((x+2)^2)/(2\sqrt3√(x^2+4x+1))

etc.
answered
User Beertastic
by
7.6k points

Related questions

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.