asked 22.4k views
1 vote
Integrate sin²2x cos²2xdx

asked
User Aldranor
by
7.9k points

1 Answer

4 votes

\sin^2x=\frac{1-\cos2x}2

\cos^2x=\frac{1+\cos2x}2

From the identities above, you have


\sin^22x\cos^22x=\frac{(1-\cos4x)(1+\cos4x)}4=\frac{1-\cos^24x}4

Applying once more, you have


\frac{1-\cos^24x}4=\frac{1-\frac{1+\cos8x}2}4=\frac{1-\cos8x}8

So,


\displaystyle\int\sin^22x\cos^22x\,\mathrm dx=\frac18\int(1-\cos8x)\,\mathrm dx=\frac x8-\frac1{64}\sin8x+C
answered
User Mehdi Shahdoost
by
8.7k points

Related questions

asked Jun 13, 2018 22.8k views
Don Chambers asked Jun 13, 2018
by Don Chambers
8.5k points
1 answer
1 vote
22.8k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.