asked 43.6k views
5 votes
Integrate dx/sin3xtan3x

1 Answer

0 votes

\displaystyle\int(\mathrm dx)/(\sin3x\tan3x)=\int(\cos3x)/(\sin^23x)

Set
u=\sin3x, so that
\mathrm du=3\cos3x\,\mathrm dx. Then the integral is


\displaystyle\frac13\int(\mathrm du)/(u^2)=-\frac1{3u}+C=-\frac1{3\sin3x}+C=-\frac13\csc3x+C

Or, if you meant exponents in place of coefficients,


\displaystyle\int(\mathrm dx)/(\sin^3x\tan^3x)=\int\csc^3x\cot^3x\,\mathrm dx=\int\csc^2x\cot^2x\csc x\cot x\,\mathrm dx

Let
u=\csc x, so that
\mathrm du=-\csc x\cot x\,\mathrm dx, and use the fact that
\csc^2x=\cot^2x+1 to get


\displaystyle-\int u^2(u^2-1)\,\mathrm du=\int (u^2-u^4)\,\mathrm du=\frac13u^3-\frac15u^5+C

=\frac13\csc^3x-\frac15\csc^5x+C
answered
User Quantumplate
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.