asked 69.4k views
1 vote
Limit tends to 0 1-cos4x/1-cos6x

asked
User Binary
by
8.4k points

1 Answer

3 votes

\displaystyle\lim_(x\to0)(1-\cos4x)/(1-\cos6x)=\lim_(x\to0)(1-\cos4x)/(1-\cos6x)*(1+\cos4x)/(1+\cos4x)*(1+\cos6x)/(1+\cos6x)

=\displaystyle\lim_(x\to0)(1-\cos^24x)/(1-\cos^26x)*(1+\cos6x)/(1+\cos4x)

=\displaystyle\lim_(x\to0)(\sin^24x)/(\sin^26x)*(1+\cos6x)/(1+\cos4x)

=\displaystyle\lim_(x\to0)(\sin^24x)/(\sin^26x)*((4x)^2)/((4x)^2)*((6x)^2)/((6x)^2)*(1+\cos6x)/(1+\cos4x)

=\displaystyle\lim_(x\to0)\left((\sin4x)/(4x)\right)^2\left((6x)/(\sin6x)\right)^2\left((4x)/(6x)\right)^2(1+\cos6x)/(1+\cos4x)

=\displaystyle\left(\lim_(x\to0)(\sin4x)/(4x)\right)^2\left(\lim_(x\to0)(6x)/(\sin6x)\right)^2\left(\lim_(x\to0)(4x)/(6x)\right)^2\lim_(x\to0)(1+\cos6x)/(1+\cos4x)

Recall that
\displaystyle\lim_(x\to0)(\sin ax)/(ax)=\lim_(x\to0)(ax)/(\sin ax)=1. You then have


\displaystyle\left(\lim_(x\to0)(4x)/(6x)\right)^2\lim_(x\to0)(1+\cos6x)/(1+\cos4x)

=\displaystyle\left(\lim_(x\to0)\frac23\right)^2\lim_(x\to0)(1+\cos6x)/(1+\cos4x)

=\displaystyle\frac49*(1+1)/(1+1)

=\displaystyle\frac49
answered
User Merger
by
8.8k points

Related questions

asked Jan 8, 2018 9.6k views
Tjaart Van Der Walt asked Jan 8, 2018
by Tjaart Van Der Walt
7.2k points
2 answers
5 votes
9.6k views
asked Sep 14, 2018 233k views
Shigeo asked Sep 14, 2018
by Shigeo
7.6k points
2 answers
2 votes
233k views
asked Jun 24, 2024 177k views
Worldask asked Jun 24, 2024
by Worldask
8.5k points
1 answer
2 votes
177k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.