asked 178k views
1 vote
Which equation represents a parabola that has a focus of (0, 0) and a directrix of y = −6 ?

a. x² = 12y
b. x² = 12(y + 3)
c. x² = −3y
d. x² = −3(y + 3)

asked
User Jjst
by
7.5k points

2 Answers

6 votes

Answer:

Answer:b. x² = 12(y + 3)

6 votes
If the focus is (0,0) and the directrix is y=-6, the equation will be found as follows:
Let (x,y) be any point on the parabola. Find the distance between (x,y) and the directrix, then find the distance between (x,y) and the focus. Equate these two distance equations and the simplified equation in x and y is equation of the parabola.

The distance between (x,y) and (0,0) is √(x²+y²)
The distance between (x,y) and the directrix, y=-6 is ly+6l

Equate the two distance expressions and square on both sides

√(x²+y²)=ly+6l
x²+y²=(y+6)²

simplifying and bringing terms together we get:

x²-12y-36=0

make x² the subject:
x²=12y+36
x²=12(y+3)

Answer:b. x² = 12(y + 3)
answered
User Brian Knoblauch
by
7.4k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.