asked 21.6k views
5 votes
Evaluate the line integral using the fundamental theorem of line integrals. use a computer algebra system to verify your results. (2z + 4y) dx + (4x − 3z) dy + (2x − 3y) dz c (a)

c.line segment from (0, 0, 0) to (1, 1, 1)

1 Answer

2 votes
Parameterize the line segment
\mathcal C by


\mathbf r(t)=(x(t),y(t),z(t))

\mathbf r(t)=(1-t)(0,0,0)+t(1,1,1)=(t,t,t)

with
0\le t\le1. Now,


\displaystyle\int_(\mathcal C)(2z+4y)\,\mathrm dx+(4x-3z)\,\mathrm dy+(2x-3y)\,\mathrm dz

\displaystyle=\int_(\mathcal C)(2z+4y,4x-3z,2x-3y)\cdot(\mathrm dx,\mathrm dy,\mathrm dz)

=\displaystyle\int_(t=0)^(t=1)(6t,t,-t)\cdot(1,1,1)\,\mathrm dt

=\displaystyle\int_0^16t\,\mathrm dt=3
answered
User James Pearce
by
8.3k points