asked 76.5k views
2 votes
The volume of two similar figures are given. The surface area of the smaller figure is given. Find the surface area of the larger figure. V= 4752 , V = 2750 , S.A. = 1475

1 Answer

1 vote

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \cfrac{large~figure}{small~figure}\qquad \cfrac{\sqrt[3]{4752}}{\sqrt[3]{2750}}=\cfrac{√(x)}{√(1475)}\qquad \begin{cases} 4752=3\cdot 3\cdot 3\cdot 2\cdot 2\cdot 2\cdot 22\\ \qquad 3^3\cdot 2^3\cdot 22\\ \qquad 6^3\cdot 22\\ 2750=5\cdot 5\cdot 5\cdot 22\\ \qquad 5^3\cdot 22\\ 1475=5^2\cdot 59 \end{cases}


\bf\cfrac{\sqrt[3]{6^3\cdot 22}}{\sqrt[3]{5^3\cdot 22}}=\cfrac{√(x)}{√(5^2\cdot 29)}\implies \cfrac{6\underline{\sqrt[3]{22}}}{5\underline{\sqrt[3]{22}}}=\cfrac{√(x)}{5√(29)}\implies \cfrac{6}{5}=\cfrac{√(x)}{5√(59)} \\\\\\ \cfrac{6\cdot \underline{5}√(59)}{\underline{5}}=√(x)\implies 6√(59)=√(x)\implies (6√(59))^2=x \\\\\\ 6^2\cdot 59=x\implies 2124=x
answered
User Sunil Luitel
by
8.4k points

Related questions

asked Dec 7, 2024 154k views
Irshad Ali asked Dec 7, 2024
by Irshad Ali
9.2k points
1 answer
4 votes
154k views
asked Dec 25, 2021 214k views
Rob Davis asked Dec 25, 2021
by Rob Davis
7.9k points
2 answers
2 votes
214k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.