Answer:  The simplified expression is: " 5x² + x – 7 " . 
_____________________________________________
Note:
_____________________________________________
We are given:
_____________________________________________
 → " (7x² + 4x – 6) – (2x² – 3x + 1) " ; 
____________________________________
Let us simplify this expression:
____________________________________
Rewrite as:
____________________________________
 (7x² + 4x – 6) – 1(2x² – 3x + 1) ; 
{Since there is an implied "one", since "1" ; multiplied by any value, results in the same value} ; 
___________________________________________
Let us start with the following part of the expression:
___________________________________________
 → " – 1(2x² – 3x + 1) " ; 
___________________________________________
Note the "distributive property" of multiplication:
____________________________________________
 a(b + c) = ab + ac ; 
 a(b – c) = ab – ac ; 
____________________________________________
As such: " a(b – c + d) = ab – ac + ad " ; 
____________________________________________
So: 
______________________________________________________
 → " – 1(2x² – 3x + 1) " = (-1 * 2x²) – (-1* -3x) + (-1 * 1) ; 
 = -2x² – 3x + (-1) ; 
 = -2x² – 3x – 1 ;
______________________________________________________
Now, bring down the: " 7x² + 4x – 6 " ; and add the " – 2x² – 3x – 1 " ; 
as follows:
___________________________________________
 → " 7x² + 4x – 6 – 2x² – 3x – 1 " ;
___________________________________________
 → Combine the "like terms" :
 + 7x² – 2x² = + 5x² ;
 + 4x – 3x = + 1x = + x ; 
 – 6 – 1 = – 7 ; 
____________________________________________
And we can rewrite the simplified expression as:
____________________________________________
 → " 5x² + x – 7 " . 
____________________________________________